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Fluctuation-response relations for multitime correlations
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We show that time-correlation functions of arbitrary order for any random variable in a statistical dynamical
system can be calculated as higher-order response functions of the mean history of the variable. The response
is to a “control term” added as a modification to the master equation for statistical distributions. The proof of
the relations is based upon a variational characterization of the generating functional of the time correlations.
The same fluctuation-response relations are preserved within moment closures for the statistical dynamical
system, when these are constructed via the variational Rayleigh-Ritz procedure. For the two-time correlations
of the moment variables themselves, the fluctuation-response relation is equivalent to an “Onsager regression
hypothesis” for the small fluctuations. For correlations of higher order, there is a further effect in addition to
such linear propagation of fluctuations present instantaneously: the dynamical generation of correlations by
nonlinear interaction of fluctuations. In general, we discuss some physical and mathematical aspects of the
Ansdze required for an accurate calculation of the time correlations. We also comment briefly upon the
computational use of these relations, which is well suited for automatic differentiation tools. An example will
be given of a simple closure for turbulent energy decay, which illustrates the numerical application of the
relations.

PACS numbegps): 05.10—-a, 05.45--a, 05.20.Gg, 05.46.a

I. INTRODUCTION of our control field does not require any knowledge of the
steady-state measure and is quite easy to write down explic-
It is well known that, in statistical equilibrium systems, itly. Most importantly, all multitime correlations of any finite
there are very useful relations between two-time correlatiorder are obtained as higher-order response functions to the
functions and mean response functiofis2]. The best- same control field. Furthermore, the statistics of the system
known form of this relation gives the two-time correlation need not be those of thermal equilibrium or even stationary
function in terms of a response function of the solution of thein time. The proof of the relations is based upon a variational
microscopic equation of motion to an imposed infinitesimalcharacterization of the generating functional for the time-
perturbation, when the response is averaged over the equiligorrelation functions, which was established in previous
rium ensemble. These relations are often called “fluctuationwork [4]. Here we shall give a reformulation of that result
dissipation relations” but we prefer the terftuctuation-  which is of interest in its own right, as it considerably sim-
response relatiofiFRR) as being more descriptive. A similar plifies and streamlines the analysis in the old work.
relation has been shown to hold arbitrarily far from thermo-  The FRR we derive is, however, prohibitively difficult to
dynamic equilibrium in stochastic dynamical systems de-apply when Eq(1.1) describes a spatially extended system
scribed by nonlinear Langevin equatiof. In this case, with many degrees of freedom. In such cases the master
however, the response is to a forcing term added into thequation is a partial differential equatid®DE) in a huge
Fokker-Planck equation rather than to the dynamical equanumber of variables, far too many to permit a direct numeri-
tion for individual realizations. The validity of this form of cal solution. The practical use of the FRR in this context will
the theorem depends upon a correct coupling of the forceiepend upon the employment of moment-closure approxima-
which, unfortunately, requires a knowledge of the steadytions. As we shall show, the FRR remains valid within the
state invariant measure. This latter fact makes the generanoment closures when these are formulated variationally via
ized theorem quite difficult to apply in practice. the Rayleigh-Ritz method proposed [i#i]. We shall review
Itis the purpose of this work to prove a far-reaching gen-here the Rayleigh-Ritz approximation, providing some new
eralization of the fluctuation-response relation. Our versionjerivations of the old results in addition to establishing the
of the theorem holds for anftime-dependentMarkov pro-  FRR’s for the moment closures.
cess described by a master equation for the distribution func- The plan of this paper is as follows. In Sec. Il we discuss

tion in phase space: the variational approach to statistical dynamics. The treat-
R ment here will be different in several points and provides
AP(x,1) =L(t)P(x,t). (1.  significant simplifications of that if4]. We then employ the

variational apparatus to establish the FRR’s. In Sec. Il we
We include in our discussion the limiting case of the Liou-review the Rayleigh-Ritz formulation of moment closure and
ville equation for a deterministic dynamical system. Ourthe FRR'’s in that approximation. We also discuss there the
theorem is more similar to that {i8], since it considers the physical significance of the FRR’s, relating that for the two-
response to a driving or “control” term added into the mas-time correlation to a linear “regression hypothesis.” The
ter equation(1.1) rather than to the equation for individual closure FRR for the r{+1)-time correlations, withn>1,
realizations. However, in contrast to that result, the couplingcontains also an effect from the nonlinear terms in the clo-
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sure, namely, the creation of correlations by interaction ofit is not hard to check from its definitiof2.4) thatW,[ h] is
fluctuations. Finally, some physical and mathematical propa convex functional oh. The Legendre dual of this func-
erties required of the probability density functidPDF)  tional is defined to be the effective action oft):

models employed for moment closure will be discussed. Sec-

tion IV concerns numerical aspects, in particular, computa- I'z[z]=suf(h,z) =Wz[h]}, (2.6
tionally efficient and accurate methods for computing the h

derivatives required in the FRR’s. A simple example of a_ . __ T . . .
turbulence closure will be used to illustrate the numericaIW'th (h,z).._fdth. (1)z(t). It IS a genferatmg fL.mct|onaI of
. . . - so-called irreducible correlation functions B(t):
issues. The last section, Sec. V, contains our conclusions

from this work. An Appendix is also included which sum- 5T, 2] ‘
marizes the results of the closure FRR diagrammatically in Fil...in(tla---vtn):5 "
terms of Feynman-type graphs with propagators and vertices Zil( 1) Zin( n)

generated from the closure.

2.7)

‘ 7=z

The functional derivatives here are evaluated at the mean
history z(t) :=(Z(t)). It is not hard to check from the defi-
nition (2.6) thatI';[ z] is a convex, non-negative functional
with a unique global minimuntequal to zerp at the mean
A. Variational approach to statistical dynamics history z=z.

There is a useful characterization of the effective action
I';[z] by means of a constrained variation of the action
I'[A,P], which was established i]. In fact,

II. VARIATIONAL FORMULATION
AND FLUCTUATION-RESPONSE RELATIONS

Suppose thaX(t) is a (vector-valuedl Markov process,
whose distributiornP(x,t) at timet is governed by the for-
ward Kolmogorov equation or master equation

3Pt =L P(x.1), 2.1) T2l 2]=(stptspl LA P] 28
R [where(st.pt) is the stationary poirt when varied over the
with L(t) the instantaneous Markov generator. The randonsame classes as above, but subject to constraints of fixed
process governed by a stochastic differential equation is averlap
particular example, for which the generator is the Fokker-
Planck operator. This includes the degenerate case of a de- (A1), P(1))=1 2.9
terministic dynamics, for which the generator is the Liouville i )
operator. Observables, or random variabldéx.t) evolve and fixed expectation
under the corresponding backward Kolmogorov equation -

(AL, Z(t)P(t)) = 2z(t) (2.10

= — A* ~
A L* A, 2.2 for all te[t;,t;]. Note thatZ(t) is used to denote the op-

. L . . - ) erator(in bothL! andL*) of multiplication by Z(x,t). The
in whichL* (1) is the adjoint operator di(t) with respectto 10| agrange equations for this constrained variation may

the canonical bilinear form onL”xL%, ie., (AP) : : : : :
' ' ' e obtained by incorporating the expectation constraint

=Jdx A(x)P(x). The backward and forward Kolmogorov 5 10 with a Lagrange multipliei(t). The overlap con-

equations may be simultaneously obtained as Euler:

. ) . . . straint may also be imposed with a Lagrange multipliér),
Lagrange equations for stationarity of the action functional as it was i):u[ 4] P grang Piic)

y However, it turns out to be advantageous to impose Eq.
I'TA,P] ,:J dt (A(t),[d,—L(H)]P(1)) (2.3 (2.9 through the definitions
5

A1) :=1+[B(t)—(B(t))]:=1+C(1), (2.11
when varied overP(t)eL! with initial condition P(t;) ) ] N
=P, and A(t) e L* with final condition A(t;)=1. For de-  With the final conditions5(t) =C(t;)=0. Note that(5(t)),
tails, sed4]. :=(B(t),P(t)) is the expectation with respect to the distribu-
Let Z(t) := Z(X(t),t) be a random variable for the system tion P(t). Hence, the overlap constraif2.9) is satisfied
given by the continuous functioZ(x,t). Then, the cumu- When B(t) is varied independently of(t). The variable
lant generating functional;[ h] is defined as C(t) is no longer independent d¥(t), but must satisfy the
orthogonality condition{C(t),P(t))=0. The expectation
> constraint must still be implemented by the Lagrange multi-

ty
Wz[h]=ln<exp< Jt dth'()Z(t) (2.4 plier h(t). In terms ofB(t) or C(t) the latter constraint is

The nth-order multitime cumulants oZ(t) are obtained 2D =(2O)+HZMBO)—(ZO)BO)N]
from W[ h] by functional differentiation with respect to the =(Z(1))+(Z(1)C(1));. (2.12
“test history” h(t):
The Euler-Lagrange equations are obtained by varying the
5"W,[ h] ‘ action I'[ A, P] over B(t),P(t) with A(t)=21+[B5(t)
Cip gt =5 ) oh (1 )‘ (2.9 —(B(t))], incorporating the constraii2.12 with the mul-
E ' M=o tiplier h(t). A straightforward calculation gives
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dP()=LOP)+hT (D[ Z(t)—(Z2(1))]P(t)
(2.13

and
GB(t)+L* () B(H) +hT (D[ Z()B(t) —( Z(1))B(1)
—(B())Z(t)]+h'(t) Z(t)=0. (2.14
Let us introduce the new operator

La(O) =L +hTO[2Z()—(Z(1)].  (2.19

The variational equations are written in terms of this operator

as

aP(t)=Lp(H)P(t) (2.16

and

at8<t>+E:<t>ts<t>+hT(t)Z(t)[l—<B<t>>t]=o.(2
1

Using the resulting identity d/dt){(B(t)),=—h"(t)[1

—(B(1))]{Z(1));, the last equation can be rewritten in

terms ofC(t) = B(t) — (B(t)), as

aC()+LE e +hT([2(t) —(2(1))]=0.
(2.18

The action functional may be expressed in termg,oP
as

ty ~
F[C,P]=L dt(C(t),[d,—L(t)]P(1)), (2.19

usingI:* (t)1=0. The effective actiol’5[ z] is then obtained
by substituting the solutions of EqR.16) and(2.18), when
the “control field” h(t) is chosen so that Eq2.12) repro-
duces the considered historgt). The quantityz(t) can be
seen to be “controllable” byh(t) from Legendre duality.
That is, the controh[t;z] for a specifiedz(t) is obtained
from the minimization of the convex functiotwW,[h]

—(h,z) [compare Eq(2.6)]. Gathering together all of our
previous discussion we may state the following proposition. Rii i [tity,...th:0]:
i LGt

Proposition The effective action of the variablg(t) is
obtained as

t A
Mgzl [ ot ra-Lwtpn), @220

where(, P satisfy

aP(t)=Lp(t)P(t) (2.20)

and

GO +LE(CH)+hT(O[Z(D)—(2(1))]=0
(2.22

with initial and final conditions

P(t))="Py, C(t;)=0, (2.23

and the value of the control field is selected to give for all
telt; t]

(Z(0))H(ZMC())=2(1). (2.24

B. Fluctuation-response relations

It is not accidental that the same notatiuft) was chosen
above for the control field as for the argument of the
cumulant-generating functionalVz[ h]. In fact, we shall
prove that

t
Wz[h]=ft_ dth"(O)(Z(1)1, (2.29

using just the solutioP(t;h) of the forward equatiof2.21),

for the control historyh(t) which appears as the argument of
W . The result is obtained by simply substituting the con-
straint(2.24) into the inverse Legendre transform 1éf; :

t
Wz[h]= Jt dthT(t)z(t)—T'[Z]

t
- [MaunT o 2o+ (zwen).
—{C(t),(a—L)P(1))}

t ~
- | a0 e .- Lypm)]
=thdthT(t)<Z(t)>t. (2.26
4

The second term in the third line vanishes by Ej21).

The relation (2.25 is a compact presentation of the
fluctuation-response relations. Let us define the response
functional of ordem for the variableZ(t) as

S Zi(1))
=5, (tp)-oh, (G
(2.27

where( Z(t)); denotes as before the average with respect to
the solutionP(t;h) of Eq. (2.21). This functional is causal,
i.e., it vanishes it<t; for anyi=1,...n, because the average
(2(t)), cannot have any dependence updn’) for t'>t.

The nth-order response function is taken to be the value at
h=0:

Ri;i1-~~in(t;tl---’tn):=Ri;il~~in[t;tlr---:tn ;h]|h:0'
(2.28

We now state the fluctuation-response relations.
Proposition The (h+1)st-order cumulant
(t1,...,th4+1) is determined for each integee0 by

11 et
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obtained by means of the characterization of that functional
through the constrained variation in E@.8). Rather than
nti varying over allAe L”, PeL?, one varies only over finitely
=2 R (ot e tne), parametrized trial functions. The trial functions are con-
K=t structed from the usual elements of a moment closure: a set
(2.29 of moment functiongvi;(x,t), i=1,...R, and a PDFAnsatz
P(x,t; ), which is conveniently parametrized by the mean
where the caret ™ denotes omission of the corresponding values that it attributes to the moment functions

expression. Observe that only the one term wih .= dxP(x,t; m)M(x,t). The left trial function is then taken
=max,t, is actually nonzero in the sum, by causality of the tg be

response function.

The proof of the relations is very simple. We recall the
formula (2.5 for the cumulant in terms of the generating B(x,t; @) ==Z aiM;(x,t). (3.1
functional W, and the corresponding definitidg.27) of the =t
response functionals. Tak_img+1 functional derivatives of Following the discussion in Sec. Il A, we have chosen the
W in Eq. (2.29, one obtains left trial state in the form(2.11), to incorporate automatically
the overlap constrain®.9). The historiesa(t) and u(t) are

Cipipy,(trritnig)

R

5" W, [h] : N .
the parameters to be varied over. Substituting the trial forms,
ohi (ty)---ohi  (theq) one obtains the reduced action
n+1 t
=3 Riiyieip it Bt ih] I[ap]= ft dta’ (D) - V(D] (3.2

ts i
+; AU (O, [t e, with
I . r\*
2.30 V() :=((a+L*IM(D)) .. (3.3
) ) , , , Of course(-),, denotes the average with respect to the PDF
This formula is easy to prove by induction upanSetting  ansatz An unconstrained variation of E3.2) recovers the
h=0, the last integral term vanishes and one obtains Edgiandard moment-closure equatipreV(u,t).
(2.29. . For the calculation of the action, however, there is the
It is important to point out that the operatbf, in Eq.  additional expectation constraif®.10. In terms of the trial
(2.21 has a quite simple and explicit dependence upon th@arameters, it becomes
control field h(t), given in Eqg.(2.15. While simple, the
coupling does depend upon the solutiB(t) itself, through z2(t) =& (1), )+ Co(u(t), ) a(t). (3.9
the averagd Z(t)),. Hence, Eq(2.21) for P(t) is actually
quadratically nonlinear, unlike the original master equationHere,
Nevertheless, this nonlinearity is exactly that required to pre-
serve the normalization of the solution. The equation may be dmt):=(Z(1)) 3.9
integrated forward in time to obtain simultaneou#lft) and

(Z(t)); as functionals of the contrdi. The response func- Is theZ expectation within the PDRnsatzand

tions can then be determined by differentiating the results. Cz(ﬂ,t)==(z(t)MT(t)>M— At (3.6)
IIl. MOMENT-CLOSURE APPROXIMATIONS is the correspondingM covariance matrix. It is remarkable
o ) that {( u,t) andC,(u,t) are the only inputs of the PDRn-
A. Variational formulation of moment closure satz actually required for the calculation. When the con-

The results of the previous section provide a general apstraint(3.4) is incorporated into the action function@.2) by
proach to computation of the multitime cumulants. Howevermeans of a Lagrange multiplidr(t), the resulting Euler-
it is obvious that the required integration of the modified Lagrange equations are
master equatiof2.21) will be possible only for the simplest
of models, with a few degrees of freedom. For spatially ex- =V (mt) +Cy(m (1) =V(p,h,t) 3.7
tended systems with many degrees of freedom, this integra-
tion is totally intractable. The practical employment of the and
FRR’s then depends upon making moment-closure approxi-
mations. We shall review here the variational formulation of at
moment-closure approximation, following essentially the
treatment in4]. However, we shall also introduce some im-
portant simplifications, which we comment upon as we pro-These are solved subject to an initial conditipt;) = uo
ceed. and a final conditiona(t;)=0. When the solutions of the

Moment-closure approxima’[ions to the generating funcjntegrations are substituted into Eq32), there results a
tional "5 z] of irreducible multitime correlations &(t) are  Rayleigh-Ritz approximatioﬁz[z] to the effective action of

Vs

-
W) (m,ht)at+

ag)T B
Ew (m,)h(t)=0. (3.9
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Z(t). The valuez(t) of the argument is that given by the \7Vz[h]+1~“z[z]=<h,z>. (3.12
constraint equatiori3.4) for the given value of the control
field h(t). It may be easily checked that this definition is equivalent to

The above derivation of the moment-closure approximathe formula
tion T',[z] is equivalent to that if4] but differs in some

important details. The trial states employed4n each con- v _ ft’ T
tained an additional parametep, and «ag, with Walh] t dth (1) Z((t).t) (313

=uo(l,m), a=(ag,a). Thus, the trial states employed

there may be written, in our present notation as in which u(t) is the solution of the forward equatidi3.7)
for the control historyh(t). The derivation is the exact ana-
PX, ;) := woP(X,t; ) (3.9 log of that of Eq.(2.26). Indeed, it follows that
and

~ ts ~
Wz[h]ZJ't_ dth'(t)z(t)—T,[Z]

R
At @)=, aiMi(x,t). (3.10 (v
% - f AT Z(u(0).1)

Thus, uo was an arbitrary normalization factor ang was +Ch(u(t), D a(t)]— @’ (H)[ in(t) = V(m(t), D]}
the coefficient of the constant moment functidy(x,t)

=1. With this pair of trial functions, the overlap constraint [ T

(2.9 was no longer automatically enforced and needed to be N J;. dt{h (O Z(a(V).1)

incorporated via a Lagrange multipliar(t). The resulting '

Euler-Lagrange equations of the constrained variation for —a" ([ p(t) = Vz(u(t),h(t),0)]}

m(t),a(t) then involved both multipliersi(t) and\ (t). See t

Eas. (3.93—(3.99 in [4]. Nevertheless, those equations are :f dth(t)Z(u(t),t), (3.14
equivalent to Egs(3.7) and (3.8) above. We shall not give t;

all the details here, but leave it as a relatively simple exercise o

for the reader to check. We only point out that one maywhere_ Eq.(3.7) was used to eliminate the second term of the
always takeuo,=1, without any loss of generality, by ab- third line. _ _ _ _
sorbing that factor into the coefficients of the left trial Itis a very attractive feature of the Rayleigh-Ritz approxi-
function. It then follows from the 0 component of §§.93  mation scheme that the resulting functiondlg[z] and

in [4] that the Lagrange multiplier for the overlap constraint\y,[h] remain formal Legendre transforms of each other.
is given explicitly as That is,

AN =Vo(u,h,t)=hT(H) Y m,t). 3.1 ST SW
(D)=Vo(mh)=hT() 1) (3.10 tizl- O (2], A . @5

If one uses this result and also uses the constraint equation

(3.99 in [4] to eliminate the variabler, from the equations, This follows from the discussion ], where it was derived
then one derives from Eq$3.93—(3.99 in [4] identically by a reduction from the underlying variational formulation of
the same equations as E¢8.7) and(3.8) above. the master equation. It is worthwhile to record here another
Despite their equivalence to the variational equations inderivation, which is instead based directly upon the con-
[4], the form in Egs(3.7) and(3.8) above is far more con- strained moment equation®.7) and (3.8. Among other
venient. Because of the presence of the multipkét) in  things, this new proof carries over usefully to discrete ap-
both the forward and backward equatidi3s93 and (3.949  proximations of the moment equations employed in numeri-
in [4], those equations posed—apparently—a true initial-cal computations that do not follow directly from an under-
final value problem. It was proposed [#] to solve that |ying microscopic theory.
boundary-value problem in time with a relaxation method. The derivation begins by functionally differentiating Eq.
However, we now see that the forward equatidr) is com- (313 with respect toh(t):
pletely uncoupled from the backward equation. It may be
integrated forward in time, storing the solutigeft) for sub-
sequent input into the backward equati@8) for a(t). Ef-
ficient numerical algorithms for doing so and then integrat-

s\W,

=g+ |

[ 84s)\T
ds(_ﬁh(t)) h(s)

ing the results to calculate the approximate action have been t [ om(s)\T[ oL T
developed by us and will be discussed in another work. =§(t)+f ds(m) (@(u,s)) h(s).
t
B. Fluctuation-response relations in closures (3.1

A Rayleigh-Ritz approximatioW,[h] to the cumulant- The abbreviatiorf(t) :=(u(t),t) was introduced and in the
generating functional may be introduced by the formal relasecond line the chain rule was employed. Causality was also
tion invoked to reset the lower limit of integration. The response
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matrix su(s)/ sh(t) that now appears satisfies an equation

! : W appear . Cipip,y(taseotnin)
obtained by functionally differentiating Eq3.7) with re-

spect toh(t): nti
) = 2 Rik;il"'il”'irwl(tk;tll"”f;'"'1tn+l)'
O )OS ras—t)  (317) -
sh(t) sh(t) 2 ' (3.24
with the abbreviation This FRR within moment closures is a practical way to com-
Py pute multitime correlations numerically, as we shall see be-
z
A(S)i="5 1 ((S).1(9),59). (318 low.
The equation(3.17 can be solved with a Greens function C. Physical interpretation of the closure FRR
given by a time-ordered exponential: The results are easiest to interpret physically in the case
5 n=1. In that case, the FRR deals with the second-order cu-
(s) CTex fSA(r)dr Clpt). (3.19 mulant of ZT(t) or the_z two-time covariance matri€(t,tg)
oh(t) t :=(86Z(t) 6Z(to)) [with 6Z(t):=Z(t)—(Z(t))]. The FRR

. _ ) ) here states that
The adjoint of this propagator appears in the solution of the

backward equatio3.8). That equation can be written as E(t,to)=§(t,to)+[§(to,t)]T, (3.25

T
a(t) +AT(H)a(t)+ j_i) (m,t)h(t)=0, (3.20 with ii(t,to):=[5§(t)/5h(to)]|h=othe response matrix. Thus,

for t>tg,

and its solution is

= od(t) 24 opm(t)
T Cltto=gny |5,/
o= ([ o Sh(to)l,_o \om H7 SN(to)],
a(t)zf ds Tex j AT(r)dr || =] (ms)h(s). =0 =0
t t Ip a t
(3.2 = —) T ex J A, (s)ds
B P (m1) to #(S)
Here T exd -] denotes the anti-time-ordered exponential. If T
the solution(3.19 for the response matrix is substituted into XCz(mto) (3.26
the second term of Eq3.16), and then Eq(3.21) is em- ]
ployed, it follows that using Eq.(3.19. We setA, (1) :=A(t)|h=o. Recall also that
Cz(m.to) =(M(to) 6Z(to)).
SW, We see that the same result can be obtained by making
[h]=&1)+Cz(t) a(t) =2(1), (3.22  two physically motivated approximations. The first is the

Sh . . . )
® slaving hypothesis: that fluctuations of the variaklg) are

using Eq.(3.4). Thus, the second relation in E(.15 is  instantaneously slaved to those of the moment variables
proved. Of course, the dual first relation is obtained by funcM(t), or 6Z(t)~(3& dp)(m.t) SM(t). Thus,
tionally differentiating Eq.(3.12 with respect toz(t) and

using Eq.(3.22. T _ (9_§ T
The Rayleigh-Ritz approximate generating functional (6Z(1)6Z(t0))~ om (i (M()9Z (to)).

W,[h] given in Eq.(3.13 retains most of the remarkable (3.27)
features of the exact generating functioNa}[ h]. In par-

ticular, its value may be obtained by integrating just the for-The second approximation is the regression hypothesis: that
ward moment equatioi3.7) for the selected control field fluctuations of the moment variablés(t) decay on average
h(t), and then substituting the solutiop(t;h) into Eq. according to the linearized closure equatiofiVi(t)
(3.13. Fluctuation-response relations follow for the approxi- ~A, (t) SM(t). Thus,

mate cumulants in the same way as before. Just as before,

one may define the approximate response function of arder T t .
for the variableZ(t) as (OM(1)6Z (to))~T ex ft A (s)ds|(SM(tg) 6Z (tp)).
0

SO (329

Riii i (Gtg,... th):= .
g gt to) 5hi1(t1)"‘5hin(tn)‘h:0 Together, Egs(3.27) and (3.28 lead directly back to the
(3.23  result(3.26.
The special case of the FRR in E§.25 with n=1 and
This functional is also causal. By the same argument as begith z(t) taken to be the moment variablé(t) itself was
fore, one obtains the fluctuation-response relations for thgreviously derived ir(5]. It was already pointed out there
Rayleigh-Ritz approximate cumulants generated fromhat the physical interpretation of the approximate FRR was
W,[h]: provided by the regression hypothesis. That result has now
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been generalized to the case wheg)#M(t) and the ad- and then setting=0.

ditional physical principle in the Rayleigh-Ritz approxima-  Some physical insight into the res(&.31) of the closure

tion is the slaving hypothesis. FRR can be obtained by rederiving the result in a more heu-
Of course, it is also of interest to consider the physicalfistic way. Let us make aonlinear regression hypothesis

meaning of the approximations involved far>1. For the that the fluctuations evolve, in general, according to the full

next casen=2, the object of interest is the third-order cu- closure dynamics. By a Taylor expansion to quadratic order,
mulant one then obtains

Cij(ta.t1,t0) =(6Zi(t) 6Z;(t1) 6Zi(to)).  (3.29 ?

M (1) =A, qj(OM(t) + !

3 g B MO IM (1)

We consider, without loss of generality, the case-t;

>1,. Using the FRR and the chain rule twice, we obtain +0(5M3). (3.35
82Li(ty) This equation can be rewritten in integral form as
Cijk(ta.ty, tO)_m
OM;(t2) =Ejp(ty,t1) SM(t1)
A () cwtz)\ Spm(ty)| PV,
e m, 1o 5h-(t1)\ - 5hk(to)|h:o f th,p(tz,t) o (1) SM (1) M ((t)

u(ty)

+0(5M3). (3.36
(’“’ 2) 5, [(ty) Shy(to

(3.30

Multiplying by éM;(t;) 6M(to) and averaging then yields
We see that the slaving principle holds in a generalizedhe formula

sense. Now higher-order derivative terms in the Taylor ex- . _
pansion ofZ(u,t) appear beyond the leading one. (OMi(t2) 3M (1) Mi(to))

In order to focus on the dynamical aspects of the 2V
Rayleigh-Ritz approximation fon=2, let us consider now ~ —J' dtBip(ta,) o — feadiin (p,t)
just the special cas&(t)=M(t), so that{(u,t)=pu. We
shall show that the FRR far=2 [andZ(t) =M(t)] implies X (M (1) SM (1) SM(t1) SMy(t)) + Eip(ta,ty)
that
X (M (1) OM;(ty) SMi(to)). (3.37)

Ciin(to gt : . - ;
ik(t2 1. to) Next, one can approximate the remaining correlations by dis-

V carding all cumulants of higher order than th{ehd discon-
f dt Elp(tht) s (mHCj(tt)Caultt))  nected terms single-time in. Then,

+Ejp(ty,t )acjp(”t Cadtite). (33D (OM4(1) M (1) M ;(t;) My(to))
pllz, g Ipg 1)%qiklt1sto %E;qj(t Bt (G, -
We have introduced the propagator of the linearized closurgich relation, substituted into the first term of Eg.37),
cynamics: yields precisely the first term of Eg3.31). Likewise,
E(t,t')=T exp( ﬁA*(s)ds). (3.32 (oM p(ty) SM|(t1) SM(to))
t ~ — Cpi(t1) Cim(t) Timq(t1) Cqulty, to), (3.39

The result(3.31) is obtained by taking the second functional

derivative with respect td(t;) of the first-order response Wherel'imq(m,t1) is the instantaneous third-order irreducible
functional correlation in the PDFAnsatz Substitution into the second

term of Eq. (3.37) yields the corresponding term of Eq.
(3.3)) if we assume that

"F‘z[tz,to;h]ﬂexp( ftzA(s)ds> Clmty) (3.33
to

dCjp
— (m,t1)=—Cp (1) Cim(t )T mq(t 3.4
using the simple identityfa continuous “product rule” of g (pnt2) pi(12) Cjm(t)Fimq(t2) (349

functional differentiation ) )
instantaneously at timg .

S ty Thus, the two terms in Eq(3.31) have quite different
)TEX%J A(t)dt) physical interpretations. The first integral term represents
! o triple correlations dynamically generated at intermediate
times t,>t>t; from the correlations propagating in from
= dtTex;{J' (s)d ) Texp(f A(s)ds)
ty to

timest, andty, which subsequently then relax to ting
according to the linearized closure dynamics. The second
(3.39 derivativeﬁzvpla,uqa,ur can be interpreted as an “interac-
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tion vertex,” due to the nonlinear terms in the closure equa<closure via an exponential PDEnsatz Thus, this closure
tion, by means of which the fluctuations interact. The seconanethodology has a special relation with the Rayleigh-Ritz
term, on the other hand, is not produced by any interaction ofpproximation scheme. This will be discussed in detail else-
the fluctuations. It represents a triple correlation present inwhere[7].
stantaneously in the closure PD&nhsatzwhich is simply
propagated in time by the linearized dynamics. Both of these
terms, as well as the terms for cases 2, can be expressed
in terms of suitable diagrams. These involve propagators A. Numerical differentiation
from the linearized dynamics and vertices from both the non- . :
linear terms in the dynamics and the higher-order correIaFe VL\Ilieraf\g? S;Udrllegisz;:neagia?gtgrgﬁgr?;tﬁérillaticallatzcon-
tions in the instantaneous P¥hsatz(see the Appendix Of =q _phy; y . . ’y
o Y . sistent approximation of time correlations via the FRR’s. An-
course, these are not “bare” Feynman diagrams, for the . . . -
; i TS . other important issue is the feasibility and accuracy of the
Rayleigh-Ritz approximation is highly nonperturbative and . ; . ; . .
FRR'’s for use in numerical computations. Except in special

the propagators _ar_ld vertices represent “dressed” objects rec:'ircumstances, it will not be possible to employ the FRR’s
sulting from statistical closure.

: . . . ... analytically and numerical solution on the computer will be

Th_e s_mgle-tlme relatiort3.40 ”.“’?“ we derlved heuristi- requ)i/red. \)//Ve have seen that the FRR’s give thpe time corre-
cally 1S, 1N f_act, a necessary conqun for consistency of t.hqations by (functionally) differentiating the solutions of the
nglelgh—thz approxmaﬂon to the. tnple correlat|or_1. iny i modified closure equatiofB.7) with respect to the control
itis true will _the three-time correlajuon in E¢8.31 coincide field h. The numerical problem is to compute the required
2523;2} % ?rlc?raot%itzsi:ntllzt?r:et ;Vg%;g? ﬂ\;?ige%jktg’; :tti)s derivatives. It is well known that finite-difference approxi-
) . ingle- . ) mations of derivatives are inherently numerically unstable,
input into the Rayleigh-Ritz calculation. Indeed, if vas-

sumethat Eq. (3.40 holds, then the second term of Eq. because the d_ecrease in differentiation stdp needed to .
. reduce truncation error must cause the round-off error in
(3.31) can be rewritten as

finite-precision arithmetic to grow. If the FRR’s are to be a

=(2) _ = ~ useful computational tool, better numerical differentiation

Ciil(t2.t1,t9)= = Cii (12,t1) Cim(t) T img(t1) Caul s, to), methods must be devised.

(3.41) Fortunately, this problem has been encountered and
solved in the context of other dynamical problems. One of

from which it is manifest thaC;;(t,t,t) =C;; (m,t). Rela- : . ) L o .
. | g . the main application areas #ensitivity analysisin which
tions such as Eq(3.40 are also very important in other L . ; .

the sensitivity of the solution of a dynamical equation to

contexts W't.h'n the Rayleigh-Ritz method. For example, achanges in the initial data or to parameters in the equation is
relation equivalent to Eq3.40), or

required[8]. By “sensitivity” we mean just the Jacobian

or derivative matrix of the solution vector with respect to the

i i .
Tik(mt)= (9—(”,0, (3.42 parameter vec'tofor hlg'her-o.rder derlvat|v9§9ur problem
Mk is exactly of this form, in which the “sensitivities” required

are those of the solution of the modified closure equation
with respect to the added control fiddd The numerical tech-
niques that yield accurate derivatives in sensitivity analysis
depend upon solving additional dynamical equations for the
derivatives themselves. There are two general techniques for
doing so, depending upon the time order of propagating de-
Tivatives: the “forward mode” and the “reverse mode.”
These two techniques have already been illustrated in the
context of our earlier discussion. Equatit117) for the re-
sponse matrix is equivalent to

IV. THE FRR IN NUMERICAL COMPUTATION

was employed in5] to prove anH theorem at quadratic
order.

However, the relation3.40 and(3.42 are not automati-
cally true for an arbitrary PDRnsatz They might be taken
as definitions of the triple correlations within the Rayleigh-
Ritz approximation, which, we should remember, has avail
able to it directly from the single-time PDEnsatzonly the
mean {(m,t)=p and the covarianceCz(u,t)=C(u,t).
However, the triple correlator€;; (u,t) and I'j (m,t) are
symmetric in their indices, j, k, while the definitions
through Eqs(3.40 and(3.42 need not have such symmetry. Siu(t) Spu(t)

Thus, such a definition may not be consistent. Fortunately, it ah(ty) =A(t) ah(ty) (4.1
is possible to construct the closure to ensure that E340 0 0

and (3.42 hold, by employing an exponential PDkhsatz o o

such as those previously developed for Boltzmann kinetidntégrated forward in time with initial data

equations in transport theof§] (see als¢5]). Within such a

closure scheme the single-time irreducible correlators are alll Sp(t) -
obtained from a generating function: Sh(ty) =Cz(mto). (4.2
t=t
n
g T T WY : ubstituting the result into .16 gives the derivative
i (met) Ry (p.t) (3.43 Sub h I Eq3.16 he d

n

(6W,/8h(to))[h]. This illustrates the forward mode. Alter-
In fact, H(u,t) is just therelative entropy Because of Eq. natively, one may compute the same derivative by integrat-
(3.43, the consistency conditio{3.42), as well as all higher- ing the adjoint equatiofB.20 for a(t) backward in time and
order ones, can be automatically ensured by constructing thtben substituting the result into the formula
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v which follows from assuming a Gaussian one-point velocity

oW
z [h]=¢&(t)+Ca(t) a(t). (4.3 distribution. Thus, the perturbed closure equation becomes
dh(to) here
This illustrates the reverse mode. Such equations may be E=V(E)+h(t)C(E), (4.6)

developed for arbitrary derivatives and, implemented nu- . .
merically, they yield accurate and stable approximations. In which V(E) andC(E) are given by Eqsi4.4) and (4.5,

Not only are these approaches numerically efficient bu{especuvely. Now the FRR states that the two-time correla-

they can also be largely automated. Software for “automatic. o C(.t’tO)_’:<‘z)K(t)5K(t0)> is given in the Rayleigh-Ritz
differentiation” is now becoming widely available; sgg]. ~ 2PProximation by

Such tools directly generate from source code for numerical ~ SE(t)
computation of the solution of the dynamical equation a cor- C(t’tO):—a‘h(t )
responding code for the computation of its derivative. There 0

is no need to compute required input derivatives, such ag . t>t,.

Aij=dVilop;, by hand. Furthermore, it easy to compute o viont hand side of Eq4.7) has been calculated by us

“sensmvmes" Wléh respect to nFW pefrturb_attli(l)ns, ?U_Ch asnumerically, in two different ways. The first method is based
those corresponding to a new class of varialdég of in- upon the observation that

terest, without requiring extensive recalculations. The

(4.7)

h=0

method has been tested and proved successful in application SE(t) JE

to real-life codes for PDE’s employed in fluid dynamics and Shito) =-p (4.8
elsewhere. The availability of such software greatly enhances h=0 h=0

the attractiveness of the FRR's as a computational method tghereE(t;h) is the solution of the closure equation for the
calculate time correlations. modified initial datum

B. A simple example

IThe closure equations were numerically integrated with a
gourth-order Runge-Kutta scheme with time stept
2103, in double-precision arithmetic, but with initial da-

To illustrate the computational use of the FRR, we shal
consider a simple closure for the decay of homogeneou
isotropic turbulence governed by the Navier-Stokes dynam |
! pic furbu gov y V! y tum given by Eq. (4.9 for the two small valuesh=

ics. This closure was originally employed by Kolmogorov to B e ; ;
predict the mean energy decay. It was employed within the" 10 °. The derivative(4.8) of the solution at later times

Rayleigh-Ritz formalism if10] to predict the two-time cor- W& then estlmate_d by the symmetric, s_econd-order finite-
relation of the energy fluctuations. It should be emphasize&Ilfference approximation ' to the derlva}nvg. 'I_'he second
that this closure omits a physical effect that is very importan ethod for calculating the functional dgrwa_ﬂyt_a in 4.7)

in the decay of energy fluctuations: their relaxation by tur-'S_to solve the analog of Eq(4.1) with _|n|t|al datum
bulent diffusion in space. To see such effects, one must corOE(1)/0h(to)1li=,=C(Eo,to), together with the closure
struct the closure not just for the kinetic energy at a singleequation itself. These were both integrated numerically by
point (say, the origii but with the kinetic energy atll space the same Runge-Kutta code as before. The m#(®y that
points as closure variables. In that case, the closure equatioagpears in Eq(4.1) (here, a K1 matrix is given analyti-
contain “eddy viscosity” terms, which are an important lin- cally by
ear relaxation mechanism for fluctuations. Such improve- B 1
ments have been investigated and tested against simulation Ax()==pARE"" (D) (4.10

data in[11]. However, the one-moment closure is adequateynd it was input directly into the code. Hence, the only errors
for our purpose, which is to study the utility of the FRR for i the functional derivative calculated by this second method,
numerical computations. The main merit of the closure isas in the solution of the closure dynamics for the means, are
that the Rayleigh-Ritz two-time correlation is given analyti- the fourth-order truncation errors and the round-off errors.
cally; see Eq(4.4) in [10]. This provides an objective basis  \we show in Fig. 1 the correlatiof(t,t,) calculated by
of comparison for numerical results. We shall consider hergnhe FRR, compared with the analytical Rayleigh-Ritz solu-
only the two-time correlations, i.e., the case 1. tion given in Eq.(4.4) of [10]. Both the values calculated by
The closure we consider has just one moment functionghe finite-difference approximatiofmethod 1 and the ad-
the kinetic energyK=3v? at a single point in space. The joined equation for the Jacobidmethod 2 are shown. As
moment averagg is here denoted. It obeys the equation may be seen, these agree perfectly, both with each other and
. with the exact result. This is not unexpected in our example,
E(t)=—AnEP(t) (4.4 considering the high-order accuracy of our approximations
and the double-precision arithmetic. In other cases, it is hard
in which A, p are suitable real constants. SEH] for [0 asses priori the accuracy of the finite-difference ap-
details. The single-time covariancg(t) ::([5K(t)]2> is  Proximation, for which the optimal dlscrr-z_tlzat_lon step size
given in the closure by Ahgp may depend upon both space and time in an unknown
manner.
It was shown in[5] that, in general, the same two-time
C(E;t)=2E?, (4.5  correlations provided by the FRR are also given by a linear
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80 ' FRR should also hold for quantum systems, governed by
= FRR, Method 1 guantum Liouville or master equations. Rayleigh-Ritz meth-

OFRR, Method 2 . .-
—— Exact Result ods could provide a tractable means to compute multitime

statistics in quantum field theory and in the quantum many-
body problem.

8
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APPENDIX: DIAGRAMMATIC RULES

We sketch concisely here the diagrammatic rules that fol-
%z o 02 03 04 low from the closure FRR for the multitime cumulants or
time  (sec) connected correlation functions. The derivation generalizes
FIG. 1. Comparison of two-time correlations. FRR calculationsthat for the thr,ee't'me cumglant in Sec. llIC. It IS ad\{ama'
vs exact result. Initial energy d5=0 was set toE,= 10 cn/s geous to specify th_e latest tlme_to beand the earliest time
The closure parameters in the notation of ] arem=2, A to- Then, f@+1)-time correlations fort;=t,>t,_;>"-
=0.001 cnf/s%, and Kolmogorov constant= 2. >t,>ty,=t; are obtained by successive functional differen-
tiation of expression(3.33 for R[t,,ty;h] with respect to
Langevin equation. That model may be only formal, sinceN(t1),....h(tn—1), using the “product rule”(3.34). We re-
the covariance of its noise term need not be positive. In angall from Eq.(3.18 that
case, the numerical use of the Langevin model to calculate
the two-time correlations is far less efficient than the numeri-
cal use of the FRR. Not only must the stochastic equation be
integrated for a large enough number of realizatibls 1, ) _ o
but also in each realization random number generators mudf'd employ the chain rule to calculate successive derivatives.
be called in each step of the time integration. Furthermore\Ve also assume that the smgl_e-tlme |rredu0|bl_e correlations
the individual realizations governed by the Langevin dynamf1ave the entropy as a generating function, as in(Bg3.
ics will be far less smooth in space and time than averages The terms that result may be associated with graphs. The
over the ensemble, and thus much smaller space and tinfges in the graphs terminating at timgst’ (internal or ex-
discretization stepAx andAt will be required. The compu- terna) are given by the covariance functialy;(t,t’). If t
tational expense of using the Langevin model is, thus, fa=t’, thenéij(t,t)=Cij(u,t). The vertices are of two types.
higher than for the FRR and is not to be recommended. Theor each integer=2 there are (+ 1)-fold vertices of the
stochastic equation is useful only for conceptual purposeSorm
The FRR, on the other hand, is quite efficient because it

Vv - aC
A(t)==ﬁ(ﬂ,t)+h (t)ﬁ(ﬂ,t)

takes full advantage of the increased regularity and stability Jieel, IV

of statistically averaged quantities. It is really a “thermody- Wi (8):=T'im(s) R (m.8)
. " . . . M Mg,

namic approach” to calculating the time correlations and not

a “‘statistical-mechanical” method. and

r+1

V. CONCLUSIONS -T

iy, (D= (m1),

. . . ags . a'UJjjI_'“'UerJrl
In this paper we have reviewed and simplified the varia-
tional approach to statistical dynamics proposefdin As a  where the latter is just minus the single-time, irreducible (

main result, we derived a general fluctuation-response relas 1)st-order correlator. The minus sign appears because of
tion for arbitrary multitime correlations. We demonstratedine fact thatC=1I""* and thus

that the FRR’s are preserved in a moment-closure approxi-

mation by the Rayleigh-Ritz method. We discussed the JC Jr
physical significance of the closure FRR’s in terms of vari- @: - @
ous intuitive hypotheses: slaving, regressilimear and non-

Iinga}o of fluctuations. We also discusseq computat'ionglly may replace theW vertices with le-~~jr(s)

efficient and accurate methods for computing the derivatives . L

required in the FRR’s. i=(d"Vin/dpj, -~ pj ) (m,9) if the propagator lineCyi(s’,s)
Many interesting problems can be investigated with theentering thei node of theW vertex is replaced by a linear

present methods. These include temporal multiscaling in turpropagatorE,(s’,s) entering them node of theV vertex.

bulence [12,13, aging phenomena in glassy relaxation The following rules apply

[14,15, transition rate theory in chemical kinetifs6], and (i) The graphs that appear are all tree graphs with the

Lagrangian statistics of advected scalar reactghity The timest,,t,_q,...,t1,tg terminating the external lines. The
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trees are rooted at timg, and branch up to earlier times, expansion into Feynman diagrams, since the latter contain

with the times nonincreasing as one ascends the tree. closed loops and infinitely many terms. The propagators and
(il) Each vertex must be linked to at least one of the earlyertices here are all “dressed objects” and the representation
external timeg,,_4,...,ty directly by a propagator line. is nonperturbative.

(iii) The I'-type vertices are all evaluated at an early ex-  When all the external times are equgk=...=t,=t, then
ternal timet,_1,...,to, Which is determined as the latest the graphical representation simplifies considerably. There
time reached by any branch starting upward from that verteXre then nov- or W-type vertices, because the integration
and passing only through-type vertices. range over each internal timehas shrunk to zero. Further-

(iv) The W-type vertices(or the V-type) are evaluated at ore gl of thel-type vertices are now evaluated at the
internal timess that are integrated over the largest possibleggme time. In fact, the resulting graphical expansion is just
subrange of,,>s>t, consistent with the rule of nonincreas- hat of the well-known representation of the single-tinme (

ing times ascending the tree. +1)st-order cumulan€;_; () as a sum over tree dia-

Because of ruldii), it is clear that there are only finitely rams with sinale-time irreducible correlatio o
many graphs contributing to eaclm<{1)-time cumulant 9 Wi ingie-t : ucl : IF$1""r+l

function, with vertices of at mostn(+ 1)st order appearing. @S Vertices and second-order correlatdygt) on the inter-
The finite sum of all the contributions from these graphsh@l and external lines. Thus, we obtain a proof for any order
gives the FRR result for the cumulant function. Thus, it is(N+1) that, along the diagonal,=...=t,=t in time,
clear that this graphical representation is not a perturbatioﬁ:il,_inﬂ(t,...,t)=Ci1min+1(M,t).
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