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Fluctuation-response relations for multitime correlations

Gregory L. Eyink
Department of Mathematics, University of Arizona, Tucson, Arizona 85721

~Received 14 May 1999!

We show that time-correlation functions of arbitrary order for any random variable in a statistical dynamical
system can be calculated as higher-order response functions of the mean history of the variable. The response
is to a ‘‘control term’’ added as a modification to the master equation for statistical distributions. The proof of
the relations is based upon a variational characterization of the generating functional of the time correlations.
The same fluctuation-response relations are preserved within moment closures for the statistical dynamical
system, when these are constructed via the variational Rayleigh-Ritz procedure. For the two-time correlations
of the moment variables themselves, the fluctuation-response relation is equivalent to an ‘‘Onsager regression
hypothesis’’ for the small fluctuations. For correlations of higher order, there is a further effect in addition to
such linear propagation of fluctuations present instantaneously: the dynamical generation of correlations by
nonlinear interaction of fluctuations. In general, we discuss some physical and mathematical aspects of the
Ansätze required for an accurate calculation of the time correlations. We also comment briefly upon the
computational use of these relations, which is well suited for automatic differentiation tools. An example will
be given of a simple closure for turbulent energy decay, which illustrates the numerical application of the
relations.

PACS number~s!: 05.10.2a, 05.45.2a, 05.20.Gg, 05.40.2a
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I. INTRODUCTION

It is well known that, in statistical equilibrium system
there are very useful relations between two-time correla
functions and mean response functions@1,2#. The best-
known form of this relation gives the two-time correlatio
function in terms of a response function of the solution of
microscopic equation of motion to an imposed infinitesim
perturbation, when the response is averaged over the equ
rium ensemble. These relations are often called ‘‘fluctuati
dissipation relations’’ but we prefer the termfluctuation-
response relation~FRR! as being more descriptive. A simila
relation has been shown to hold arbitrarily far from therm
dynamic equilibrium in stochastic dynamical systems
scribed by nonlinear Langevin equations@3#. In this case,
however, the response is to a forcing term added into
Fokker-Planck equation rather than to the dynamical eq
tion for individual realizations. The validity of this form o
the theorem depends upon a correct coupling of the fo
which, unfortunately, requires a knowledge of the stea
state invariant measure. This latter fact makes the gene
ized theorem quite difficult to apply in practice.

It is the purpose of this work to prove a far-reaching ge
eralization of the fluctuation-response relation. Our vers
of the theorem holds for any~time-dependent! Markov pro-
cess described by a master equation for the distribution fu
tion in phase space:

] tP~x,t !5L̂~ t !P~x,t !. ~1.1!

We include in our discussion the limiting case of the Lio
ville equation for a deterministic dynamical system. O
theorem is more similar to that in@3#, since it considers the
response to a driving or ‘‘control’’ term added into the ma
ter equation~1.1! rather than to the equation for individua
realizations. However, in contrast to that result, the coupl
PRE 621063-651X/2000/62~1!/210~11!/$15.00
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of our control field does not require any knowledge of t
steady-state measure and is quite easy to write down ex
itly. Most importantly, all multitime correlations of any finite
order are obtained as higher-order response functions to
same control field. Furthermore, the statistics of the sys
need not be those of thermal equilibrium or even station
in time. The proof of the relations is based upon a variatio
characterization of the generating functional for the tim
correlation functions, which was established in previo
work @4#. Here we shall give a reformulation of that resu
which is of interest in its own right, as it considerably sim
plifies and streamlines the analysis in the old work.

The FRR we derive is, however, prohibitively difficult t
apply when Eq.~1.1! describes a spatially extended syste
with many degrees of freedom. In such cases the ma
equation is a partial differential equation~PDE! in a huge
number of variables, far too many to permit a direct nume
cal solution. The practical use of the FRR in this context w
depend upon the employment of moment-closure approxi
tions. As we shall show, the FRR remains valid within t
moment closures when these are formulated variationally
the Rayleigh-Ritz method proposed in@4#. We shall review
here the Rayleigh-Ritz approximation, providing some n
derivations of the old results in addition to establishing t
FRR’s for the moment closures.

The plan of this paper is as follows. In Sec. II we discu
the variational approach to statistical dynamics. The tre
ment here will be different in several points and provid
significant simplifications of that in@4#. We then employ the
variational apparatus to establish the FRR’s. In Sec. III
review the Rayleigh-Ritz formulation of moment closure a
the FRR’s in that approximation. We also discuss there
physical significance of the FRR’s, relating that for the tw
time correlation to a linear ‘‘regression hypothesis.’’ Th
closure FRR for the (n11)-time correlations, withn.1,
contains also an effect from the nonlinear terms in the c
210 ©2000 The American Physical Society
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sure, namely, the creation of correlations by interaction
fluctuations. Finally, some physical and mathematical pr
erties required of the probability density function~PDF!
models employed for moment closure will be discussed. S
tion IV concerns numerical aspects, in particular, compu
tionally efficient and accurate methods for computing
derivatives required in the FRR’s. A simple example of
turbulence closure will be used to illustrate the numeri
issues. The last section, Sec. V, contains our conclus
from this work. An Appendix is also included which sum
marizes the results of the closure FRR diagrammatically
terms of Feynman-type graphs with propagators and vert
generated from the closure.

II. VARIATIONAL FORMULATION
AND FLUCTUATION-RESPONSE RELATIONS

A. Variational approach to statistical dynamics

Suppose thatX(t) is a ~vector-valued! Markov process,
whose distributionP(x,t) at time t is governed by the for-
ward Kolmogorov equation or master equation

] tP~x,t !5L̂~ t !P~x,t !, ~2.1!

with L̂(t) the instantaneous Markov generator. The rand
process governed by a stochastic differential equation
particular example, for which the generator is the Fokk
Planck operator. This includes the degenerate case of a
terministic dynamics, for which the generator is the Liouvi
operator. Observables, or random variables,A(x,t) evolve
under the corresponding backward Kolmogorov equation

] tA~x,t !52L̂* ~ t !A~x,t !, ~2.2!

in which L̂* (t) is the adjoint operator ofL̂(t) with respect to
the canonical bilinear form onL`3L1, i.e., ^A,P&
ª*dx A(x)P(x). The backward and forward Kolmogoro
equations may be simultaneously obtained as Eu
Lagrange equations for stationarity of the action function

G@A,P#ªE
t i

t f
dt ^A~ t !,@] t2L̂~ t !#P~ t !& ~2.3!

when varied overP(t)PL1 with initial condition P(t i)
5P0 and A(t)PL` with final conditionA(t f)[1. For de-
tails, see@4#.

Let Z(t)ªZ(X(t),t… be a random variable for the syste
given by the continuous functionZ(x,t). Then, the cumu-
lant generating functionalWZ@h# is defined as

WZ@h#5 lnK expS E
t i

t f
dt hT~ t !Z~ t ! D L . ~2.4!

The nth-order multitime cumulants ofZ(t) are obtained
from WZ@h# by functional differentiation with respect to th
‘‘test history’’ h(t):

Ci 1 ...i n
~ t1 ,...,tn!5

dnWZ@h#

dhi 1
~ t1!¯dhi n

~ tn!U
h50

. ~2.5!
f
-

c-
-

e

l
ns

n
es

a
-
e-

r-

It is not hard to check from its definition~2.4! thatWZ@h# is
a convex functional ofh. The Legendre dual of this func
tional is defined to be the effective action ofZ(t):

GZ@z#5sup
h

$^h,z&2WZ@h#%, ~2.6!

with ^h,z&ª*dt hT(t)z(t). It is a generating functional o
so-called irreducible correlation functions ofZ(t):

G i 1 ...i n
~ t1 ,...,tn!5

dnGZ@z#

dzi 1
~ t1!¯dzi n

~ tn!U
z5 z̄

. ~2.7!

The functional derivatives here are evaluated at the m
history z̄(t)ª^Z(t)&. It is not hard to check from the defi
nition ~2.6! that GZ@z# is a convex, non-negative functiona
with a unique global minimum~equal to zero! at the mean
history z5 z̄.

There is a useful characterization of the effective act
GZ@z# by means of a constrained variation of the acti
G@A,P#, which was established in@4#. In fact,

GZ@z#5~st.pt.!A,PG@A,P# ~2.8!

@where~st.pt.! is the stationary point#, when varied over the
same classes as above, but subject to constraints of fi
overlap

^A~ t !,P~ t !&51 ~2.9!

and fixed expectation

^A~ t !,Ẑ~ t !P~ t !&5z~ t ! ~2.10!

for all tP@ t i ,t f #. Note thatẐ(t) is used to denote the op
erator~in bothL1 andL`) of multiplication byZ(x,t). The
Euler-Lagrange equations for this constrained variation m
be obtained by incorporating the expectation constra
~2.10! with a Lagrange multiplierh(t). The overlap con-
straint may also be imposed with a Lagrange multiplierl(t),
as it was in@4#.

However, it turns out to be advantageous to impose
~2.9! through the definitions

A~ t !ª11@B~ t !2^B~ t !& t#ª11C~ t !, ~2.11!

with the final conditionsB(t f)5C(t f)[0. Note that̂ B(t)& t
ª^B(t),P(t)& is the expectation with respect to the distrib
tion P(t). Hence, the overlap constraint~2.9! is satisfied
when B(t) is varied independently ofP(t). The variable
C(t) is no longer independent ofP(t), but must satisfy the
orthogonality condition ^C(t),P(t)&50. The expectation
constraint must still be implemented by the Lagrange mu
plier h(t). In terms ofB(t) or C(t) the latter constraint is

z~ t !5^Z~ t !& t1@^Z~ t !B~ t !& t2^Z~ t !& t^B~ t !& t#

5^Z~ t !& t1^Z~ t !C~ t !& t . ~2.12!

The Euler-Lagrange equations are obtained by varying
action G@A,P# over B(t),P(t) with A(t)511@B(t)
2^B(t)& t#, incorporating the constraint~2.12! with the mul-
tiplier h(t). A straightforward calculation gives
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212 PRE 62GREGORY L. EYINK
] tP~ t !5L̂~ t !P~ t !1hT~ t !@Z~ t !2^Z~ t !& t#P~ t !
~2.13!

and

] tB~ t !1L̂* ~ t !B~ t !1hT~ t !@Z~ t !B~ t !2^Z~ t !& tB~ t !

2^B~ t !& tZ~ t !#1hT~ t !Z~ t !50. ~2.14!

Let us introduce the new operator

L̂h~ t !ªL̂~ t !1hT~ t !@Ẑ~ t !2^Z~ t !& t#. ~2.15!

The variational equations are written in terms of this opera
as

] tP~ t !5L̂h~ t !P~ t ! ~2.16!

and

] tB~ t !1L̂h* ~ t !B~ t !1hT~ t !Z~ t !@12^B~ t !& t#50.
~2.17!

Using the resulting identity (d/dt)^B(t)& t52hT(t)@1
2^B(t)& t#^Z(t)& t , the last equation can be rewritten
terms ofC(t)5B(t)2^B(t)& t as

] tC~ t !1L̂h* ~ t !C~ t !1hT~ t !@Z~ t !2^Z~ t !& t#50.
~2.18!

The action functional may be expressed in terms ofC, P
as

G@C,P#5E
t i

t f
dt ^C~ t !,@] t2L̂~ t !#P~ t !&, ~2.19!

usingL̂* (t)150. The effective actionGZ@z# is then obtained
by substituting the solutions of Eqs.~2.16! and~2.18!, when
the ‘‘control field’’ h(t) is chosen so that Eq.~2.12! repro-
duces the considered historyz(t). The quantityz(t) can be
seen to be ‘‘controllable’’ byh(t) from Legendre duality.
That is, the controlh@ t;z# for a specifiedz(t) is obtained
from the minimization of the convex functionWZ@h#
2^h,z& @compare Eq.~2.6!#. Gathering together all of ou
previous discussion we may state the following propositi

Proposition. The effective action of the variableZ(t) is
obtained as

GZ@z#5E
t i

t f
dt ^C~ t !,@] t2L̂~ t !#P~ t !&, ~2.20!

whereC, P satisfy

] tP~ t !5L̂h~ t !P~ t ! ~2.21!

and

] tC~ t !1L̂h* ~ t !C~ t !1hT~ t !@Z~ t !2^Z~ t !& t#50
~2.22!

with initial and final conditions

P~ t i !5P0 , C~ t f !50, ~2.23!
r

.

and the value of the control fieldh is selected to give for all
tP@ t i ,t f #

^Z~ t !& t1^Z~ t !C~ t !& t5z~ t !. ~2.24!

B. Fluctuation-response relations

It is not accidental that the same notationh(t) was chosen
above for the control field as for the argument of t
cumulant-generating functionalWZ@h#. In fact, we shall
prove that

WZ@h#5E
t i

t f
dt hT~ t !^Z~ t !& t , ~2.25!

using just the solutionP(t;h) of the forward equation~2.21!,
for the control historyh(t) which appears as the argument
WZ . The result is obtained by simply substituting the co
straint ~2.24! into the inverse Legendre transform forWZ :

WZ@h#5E
t i

t f
dt hT~ t !z~ t !2GZ@z#

5E
t i

t f
dt$hT~ t !@^Z~ t !& t1^Z~ t !C~ t !& t#

2^C~ t !,~] t2L̂ !P~ t !&%

5E
t i

t f
dt@hT~ t !^Z~ t !& t2^C~ t !,~] t2L̂h!P~ t !&#

5E
t i

t f
dt hT~ t !^Z~ t !& t . ~2.26!

The second term in the third line vanishes by Eq.~2.21!.
The relation ~2.25! is a compact presentation of th

fluctuation-response relations. Let us define the respo
functional of ordern for the variableZ(t) as

Ri ; i 1¯ i n
@ t;t1 ,...,tn ;h#ª

dn^Zi~ t !& t

dhi 1
~ t1!¯dhi n

~ tn!
@h#,

~2.27!

where^Z(t)& t denotes as before the average with respec
the solutionP(t;h) of Eq. ~2.21!. This functional is causal
i.e., it vanishes ift,t i for any i 51,...,n, because the averag
^Z(t)& t cannot have any dependence uponh(t8) for t8.t.
The nth-order response function is taken to be the value
h50:

Ri ; i 1¯ i n
~ t;t1 ...,tn!ªRi ; i 1¯ i n

@ t;t1 ,...,tn ;h#uh50 .
~2.28!

We now state the fluctuation-response relations.
Proposition. The (n11)st-order cumulant

Ci 1¯ i n11
(t1 ,...,tn11) is determined for each integern>0 by
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Ci 1¯ i n11
~ t1 ,...,tn11!

5 (
k51

n11

Ri k ; i 1¯ i k̂¯ i n11
~ tk ;t1 ,...,t k̂,...,tn11!,

~2.29!

where the caret ‘‘̂’’ denotes omission of the correspondin
expression. Observe that only the one term withtk
5maxp tp is actually nonzero in the sum, by causality of t
response function.

The proof of the relations is very simple. We recall t
formula ~2.5! for the cumulant in terms of the generatin
functionalWZ and the corresponding definition~2.27! of the
response functionals. Takingn11 functional derivatives of
WZ in Eq. ~2.25!, one obtains

d n11WZ@h#

dhi 1
~ t1!¯dhi n11

~ tn11!

5 (
k51

n11

Ri k ; i 1¯ i k̂¯ i n11
@ tk ;t1 ,...,t k̂,...,tn11 ;h#

1(
j
E

t i

t f
dt hj~ t !Rj ; i 1¯ i n11

@ t;t1 ,...,tn11 ;h#.

~2.30!

This formula is easy to prove by induction uponn. Setting
h50, the last integral term vanishes and one obtains
~2.29!.

It is important to point out that the operatorL̂h in Eq.
~2.21! has a quite simple and explicit dependence upon
control field h(t), given in Eq. ~2.15!. While simple, the
coupling does depend upon the solutionP(t) itself, through
the averagêZ(t)& t . Hence, Eq.~2.21! for P(t) is actually
quadratically nonlinear, unlike the original master equati
Nevertheless, this nonlinearity is exactly that required to p
serve the normalization of the solution. The equation may
integrated forward in time to obtain simultaneouslyP(t) and
^Z(t)& t as functionals of the controlh. The response func
tions can then be determined by differentiating the result

III. MOMENT-CLOSURE APPROXIMATIONS

A. Variational formulation of moment closure

The results of the previous section provide a general
proach to computation of the multitime cumulants. Howev
it is obvious that the required integration of the modifi
master equation~2.21! will be possible only for the simples
of models, with a few degrees of freedom. For spatially
tended systems with many degrees of freedom, this inte
tion is totally intractable. The practical employment of t
FRR’s then depends upon making moment-closure appr
mations. We shall review here the variational formulation
moment-closure approximation, following essentially t
treatment in@4#. However, we shall also introduce some im
portant simplifications, which we comment upon as we p
ceed.

Moment-closure approximations to the generating fu
tional GZ@z# of irreducible multitime correlations ofZ(t) are
q.
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e
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obtained by means of the characterization of that functio
through the constrained variation in Eq.~2.8!. Rather than
varying over allAPL`, PPL1, one varies only over finitely
parametrized trial functions. The trial functions are co
structed from the usual elements of a moment closure: a
of moment functionsMi(x,t), i 51,...,R, and a PDFAnsatz
P(x,t;m), which is conveniently parametrized by the me
values that it attributes to the moment functionsm
ª*dx P(x,t;m)M (x,t). The left trial function is then taken
to be

B~x,t;a!ª(
i 51

R

a iM i~x,t !. ~3.1!

Following the discussion in Sec. II A, we have chosen
left trial state in the form~2.11!, to incorporate automatically
the overlap constraint~2.9!. The historiesa(t) andm(t) are
the parameters to be varied over. Substituting the trial for
one obtains the reduced action

G@a,m#5E
t i

t f
dt aT~ t !@ṁ~ t !2V„m~ t !,t…# ~3.2!

with

V~m,t !ª^~] t1L̂* !M ~ t !&m . ~3.3!

Of course,̂ •&m denotes the average with respect to the P
Ansatz. An unconstrained variation of Eq.~3.2! recovers the
standard moment-closure equationṁ5V(m,t).

For the calculation of the action, however, there is t
additional expectation constraint~2.10!. In terms of the trial
parameters, it becomes

z~ t !5z~m~ t !,t…1CZ„m~ t !,t…a~ t !. ~3.4!

Here,

z~m,t !ª^Z~ t !&m ~3.5!

is theZ expectation within the PDFAnsatzand

CZ~m,t !ª^Z~ t !MT~ t !&m2z~m,t !mT ~3.6!

is the correspondingZM covariance matrix. It is remarkabl
that z(m,t) andCZ(m,t) are the only inputs of the PDFAn-
satz actually required for the calculation. When the co
straint~3.4! is incorporated into the action functional~3.2! by
means of a Lagrange multiplierh(t), the resulting Euler-
Lagrange equations are

ṁ5V~m,t !1CZ
T~m,t !h~ t !ªVZ~m,h,t ! ~3.7!

and

ȧ1S ]VZ

]m D T

~m,h,t !a1S ]z

]mD T

~m,t !h~ t !50. ~3.8!

These are solved subject to an initial conditionm(t i)5m0
and a final conditiona(t f)50. When the solutions of the
integrations are substituted into Eq.~3.2!, there results a
Rayleigh-Ritz approximationG̃Z@z# to the effective action of
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Z(t). The valuez(t) of the argument is that given by th
constraint equation~3.4! for the given value of the contro
field h(t).

The above derivation of the moment-closure approxim
tion G̃Z@z# is equivalent to that in@4# but differs in some
important details. The trial states employed in@4# each con-
tained an additional parameter,m0 and a0 , with m̄
5m0(1,m), ā5(a0 ,a). Thus, the trial states employe
there may be written, in our present notation as

P~x,t;m̄!ªm0P~x,t;m! ~3.9!

and

A(x,t;ā)ª(
i 50

R

a iM i~x,t !. ~3.10!

Thus,m0 was an arbitrary normalization factor anda0 was
the coefficient of the constant moment functionM0(x,t)
[1. With this pair of trial functions, the overlap constrai
~2.9! was no longer automatically enforced and needed to
incorporated via a Lagrange multiplierl(t). The resulting
Euler-Lagrange equations of the constrained variation
m̄(t),ā(t) then involved both multipliersh(t) andl(t). See
Eqs. ~3.93!–~3.95! in @4#. Nevertheless, those equations a
equivalent to Eqs.~3.7! and ~3.8! above. We shall not give
all the details here, but leave it as a relatively simple exerc
for the reader to check. We only point out that one m
always takem0[1, without any loss of generality, by ab
sorbing that factor into the coefficientsa of the left trial
function. It then follows from the 0 component of Eq.~3.93!
in @4# that the Lagrange multiplier for the overlap constra
is given explicitly as

l~ t !5V̄0~m,h,t !5hT~ t !z~m,t !. ~3.11!

If one uses this result and also uses the constraint equa
~3.95! in @4# to eliminate the variablea0 from the equations,
then one derives from Eqs.~3.93!–~3.95! in @4# identically
the same equations as Eqs.~3.7! and ~3.8! above.

Despite their equivalence to the variational equations
@4#, the form in Eqs.~3.7! and ~3.8! above is far more con
venient. Because of the presence of the multiplierl(t) in
both the forward and backward equations~3.93! and ~3.94!
in @4#, those equations posed—apparently—a true init
final value problem. It was proposed in@4# to solve that
boundary-value problem in time with a relaxation metho
However, we now see that the forward equation~3.7! is com-
pletely uncoupled from the backward equation. It may
integrated forward in time, storing the solutionm(t) for sub-
sequent input into the backward equation~3.8! for a(t). Ef-
ficient numerical algorithms for doing so and then integr
ing the results to calculate the approximate action have b
developed by us and will be discussed in another work.

B. Fluctuation-response relations in closures

A Rayleigh-Ritz approximationW̃Z@h# to the cumulant-
generating functional may be introduced by the formal re
tion
-
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W̃Z@h#1G̃Z@z#5^h,z&. ~3.12!

It may be easily checked that this definition is equivalent
the formula

W̃Z@h#5E
t i

t f
dt hT~ t !z„m~ t !,t…, ~3.13!

in which m(t) is the solution of the forward equation~3.7!
for the control historyh(t). The derivation is the exact ana
log of that of Eq.~2.26!. Indeed, it follows that

W̃Z@h#5E
t i

t f
dt hT~ t !z~ t !2G̃Z@z#

5E
t i

t f
dt$hT~ t !@z„m~ t !,t…

1CZ„m~ t !,t…a~ t !#2aT~ t !@ṁ~ t !2V„m~ t !,t…#%

5E
t i

t f
dt $hT~ t !z~m~ t !,t !

2aT~ t !@ṁ~ t !2VZ„m~ t !,h~ t !,t…#%

5E
t i

t f
dt hT~ t !z„m~ t !,t…, ~3.14!

where Eq.~3.7! was used to eliminate the second term of t
third line.

It is a very attractive feature of the Rayleigh-Ritz appro
mation scheme that the resulting functionalsG̃Z@z# and
W̃Z@h# remain formal Legendre transforms of each oth
That is,

h@ t;z#5
dG̃Z

dz~ t !
@z#, z@ t;h#5

dW̃Z

dh~ t !
@h#. ~3.15!

This follows from the discussion in@4#, where it was derived
by a reduction from the underlying variational formulation
the master equation. It is worthwhile to record here anot
derivation, which is instead based directly upon the co
strained moment equations~3.7! and ~3.8!. Among other
things, this new proof carries over usefully to discrete a
proximations of the moment equations employed in num
cal computations that do not follow directly from an unde
lying microscopic theory.

The derivation begins by functionally differentiating E
~3.13! with respect toh(t):

dW̃Z

dh~ t !
@h#5z~ t !1E

t i

t f
dsS dz~s!

dh~ t ! D
T

h~s!

5z~ t !1E
t

t f
dsS dm~s!

dh~ t ! D TS ]z

]m
~m,s! D T

h~s!.

~3.16!

The abbreviationz(t)ªz„m(t),t… was introduced and in the
second line the chain rule was employed. Causality was
invoked to reset the lower limit of integration. The respon
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matrix dm(s)/dh(t) that now appears satisfies an equat
obtained by functionally differentiating Eq.~3.7! with re-
spect toh(t):

dṁ~s!

dh~ t !
5A~s!

dm~s!

dh~ t !
1CZ

T~m,s!d~s2t ! ~3.17!

with the abbreviation

A~s!ª
]VZ

]m
„m~s!,h~s!,s…. ~3.18!

The equation~3.17! can be solved with a Greens functio
given by a time-ordered exponential:

dm~s!

dh~ t !
5T expS E

t

s

A~r !dr DCZ
T~m,t !. ~3.19!

The adjoint of this propagator appears in the solution of
backward equation~3.8!. That equation can be written as

ȧ~ t !1AT~ t !a~ t !1S ]z

]mD T

~m,t !h~ t !50, ~3.20!

and its solution is

a~ t !5E
t

t f
ds T̄expS E

t

s

AT~r !dr D S ]z

]mD T

~m,s!h~s!.

~3.21!

Here T̄ exp@•# denotes the anti-time-ordered exponential.
the solution~3.19! for the response matrix is substituted in
the second term of Eq.~3.16!, and then Eq.~3.21! is em-
ployed, it follows that

dW̃Z

dh~ t !
@h#5z~ t !1CZ~ t !a~ t !5z~ t !, ~3.22!

using Eq.~3.4!. Thus, the second relation in Eq.~3.15! is
proved. Of course, the dual first relation is obtained by fu
tionally differentiating Eq.~3.12! with respect toz(t) and
using Eq.~3.22!.

The Rayleigh-Ritz approximate generating function
W̃Z@h# given in Eq. ~3.13! retains most of the remarkabl
features of the exact generating functionalWZ@h#. In par-
ticular, its value may be obtained by integrating just the f
ward moment equation~3.7! for the selected control field
h(t), and then substituting the solutionm(t;h) into Eq.
~3.13!. Fluctuation-response relations follow for the appro
mate cumulants in the same way as before. Just as be
one may define the approximate response function of ordn
for the variableZ(t) as

R̃i ; i 1¯ i n
~ t;t1 ,...,tn!ª

dnz i~ t !

dhi 1
~ t1!¯dhi n

~ tn!U
h50

.

~3.23!

This functional is also causal. By the same argument as
fore, one obtains the fluctuation-response relations for
Rayleigh-Ritz approximate cumulants generated fr
W̃Z@h#:
e

f

-

l

-

-
re,

e-
e

C̃i 1¯ i n11
~ t1 ,...,tn11!

5 (
k51

n11

R̃i k ; i 1¯ i k̂¯ i n11
~ tk ;t1 ,...,t k̂ ,...,tn11!.

~3.24!

This FRR within moment closures is a practical way to co
pute multitime correlations numerically, as we shall see
low.

C. Physical interpretation of the closure FRR

The results are easiest to interpret physically in the c
n51. In that case, the FRR deals with the second-order
mulant of Z(t) or the two-time covariance matrixC(t,t0)
ª^dZ(t)dZT(t0)& @with dZ(t)ªZ(t)2^Z(t)&#. The FRR
here states that

C̃~ t,t0!5R̃~ t,t0!1@R̃~ t0 ,t !#T, ~3.25!

with R̃(t,t0)ª@dz(t)/dh(t0)#uhÄ0 the response matrix. Thus
for t.t0 ,

C̃~ t,t0!5
dz~ t !

dh~ t0!
U

h50

5S ]z

]mD ~m,t !
dm~ t !

dh~ t0!
U

h50

5S ]z

]mD ~m,t !T expS E
t0

t

A* ~s!dsD
3CZ

T~m,t0! ~3.26!

using Eq.~3.19!. We setA* (t)ªA(t)uhÄ0 . Recall also that
CZ

T(m,t0)5^dM (t0)dZT(t0)&.
We see that the same result can be obtained by ma

two physically motivated approximations. The first is th
slaving hypothesis: that fluctuations of the variableZ(t) are
instantaneously slaved to those of the moment variab
M (t), or dZ(t)'(]z/]m)(m,t)dM (t). Thus,

^dZ~ t !dZT~ t0!&'S ]z

]mD ~m,t !^dM ~ t !dZT~ t0!&.

~3.27!

The second approximation is the regression hypothesis:
fluctuations of the moment variablesM (t) decay on average
according to the linearized closure equationdṀ (t)
'A* (t)dM (t). Thus,

^dM ~ t !dZT~ t0!&'T expS E
t0

t

A* ~s!dsD ^dM ~ t0!dZT~ t0!&.

~3.28!

Together, Eqs.~3.27! and ~3.28! lead directly back to the
result ~3.26!.

The special case of the FRR in Eq.~3.25! with n51 and
with Z(t) taken to be the moment variableM (t) itself was
previously derived in@5#. It was already pointed out ther
that the physical interpretation of the approximate FRR w
provided by the regression hypothesis. That result has n



a-

ca

u-

e
ex

he

u

al
e

eu-

full
er,

s

dis-

le

.

nts
ate

ond
-

216 PRE 62GREGORY L. EYINK
been generalized to the case whereZ(t)ÞM (t) and the ad-
ditional physical principle in the Rayleigh-Ritz approxim
tion is the slaving hypothesis.

Of course, it is also of interest to consider the physi
meaning of the approximations involved forn.1. For the
next case,n52, the object of interest is the third-order c
mulant

Ci jk~ t2 ,t1 ,t0!ª^dZi~ t2!dZj~ t1!dZk~ t0!&. ~3.29!

We consider, without loss of generality, the caset2.t1
.t0 . Using the FRR and the chain rule twice, we obtain

C̃i jk~ t2 ,t1 ,t0!5
d2z i~ t2!

dhj~ t1!dhk~ t0!
U

h50

5
]2z i

]m l]mm
~m,t2!

dm l~ t2!

dhj~ t1!
U

h50

dmm~ t2!

dhk~ t0!
U

h50

1
dz i

]m l
~m,t2!

d2m l~ t2!

dhj~ t1!dhk~ t0!
U

h50

. ~3.30!

We see that the slaving principle holds in a generaliz
sense. Now higher-order derivative terms in the Taylor
pansion ofz(m,t) appear beyond the leading one.

In order to focus on the dynamical aspects of t
Rayleigh-Ritz approximation forn52, let us consider now
just the special caseZ(t)5M (t), so thatz(m,t)5m. We
shall show that the FRR forn52 @andZ(t)5M (t)# implies
that

C̃i jk~ t2 ,t1 ,t0!

5E
t1

t2
dt Eip~ t2 ,t !

]2Vp

]mq]m r
~m,t !C̃r j ~ t,t1!C̃qk~ t,t0!

1Eip~ t2 ,t1!
]Cjp

]mq
~m,t1!C̃qk~ t1 ,t0!. ~3.31!

We have introduced the propagator of the linearized clos
dynamics:

E~ t,t8!ªT expS E
t8

t

A* ~s!dsD . ~3.32!

The result~3.31! is obtained by taking the second function
derivative with respect toh(t1) of the first-order respons
functional

R̃@ t2 ,t0 ;h#5T expS E
t0

t2
A~s!dsDC~m,t0! ~3.33!

using the simple identity~a continuous ‘‘product rule’’ of
functional differentiation!

d

dhj~ t1!
T expS E

t0

t2
A~ t !dtD

5E
t1

t2
dt T expS E

t

t2
A~s!dsD dA~ t !

dhj~ t1!
T expS E

t0

t

A~s!dsD ,

~3.34!
l

d
-

re

and then settingh50.
Some physical insight into the result~3.31! of the closure

FRR can be obtained by rederiving the result in a more h
ristic way. Let us make anonlinear regression hypothesis:
that the fluctuations evolve, in general, according to the
closure dynamics. By a Taylor expansion to quadratic ord
one then obtains

dṀ i~ t !5A* ,i j ~ t !dM j~ t !1
1

2

]2Vi

]mq]m r
~m,t !dMq~ t !dMr~ t !

1O~dM3!. ~3.35!

This equation can be rewritten in integral form as

dMi~ t2!5Eip~ t2 ,t1!dM p~ t1!

1
1

2 Et1

t2
dt Eip~ t2 ,t !

]2Vp

]mq]m r
~m,t !dMq~ t !dMr~ t !

1O~dM3!. ~3.36!

Multiplying by dM j (t1)dMk(t0) and averaging then yield
the formula

^dMi~ t2!dM j~ t1!dMk~ t0!&

'
1

2 Et1

t2
dt Eip~ t2 ,t !

]2Vp

]mq]m r
~m,t !

3^dMq~ t !dMr~ t !dM j~ t1!dMk~ t0!&1Eip~ t2 ,t1!

3^dMkp~ t1!dM j~ t1!dMk~ t0!&. ~3.37!

Next, one can approximate the remaining correlations by
carding all cumulants of higher order than third~and discon-
nected terms single-time int!. Then,

^dMq~ t !dMr~ t !dM j~ t1!dMk~ t0!&

'C̃q j~ t,t1!C̃rk~ t,t0!1~q↔r !, ~3.38!

which relation, substituted into the first term of Eq.~3.37!,
yields precisely the first term of Eq.~3.31!. Likewise,

^dM p~ t1!dM j~ t1!dMk~ t0!&

'2Cpl~ t1!Cjm~ t1!G lmq~ t1!C̃qk~ t1 ,t0!, ~3.39!

whereG lmq(m,t1) is the instantaneous third-order irreducib
correlation in the PDFAnsatz. Substitution into the second
term of Eq. ~3.37! yields the corresponding term of Eq
~3.31! if we assume that

]Cjp

]mq
~m,t1!52Cpl~ t1!Cjm~ t1!G lmq~ t1! ~3.40!

instantaneously at timet1 .
Thus, the two terms in Eq.~3.31! have quite different

physical interpretations. The first integral term represe
triple correlations dynamically generated at intermedi
times t2.t.t1 from the correlations propagating in from
times t1 and t0 , which subsequently then relax to timet2
according to the linearized closure dynamics. The sec
derivative]2Vp /]mq]m r can be interpreted as an ‘‘interac
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tion vertex,’’ due to the nonlinear terms in the closure eq
tion, by means of which the fluctuations interact. The sec
term, on the other hand, is not produced by any interactio
the fluctuations. It represents a triple correlation present
stantaneously in the closure PDFAnsatzwhich is simply
propagated in time by the linearized dynamics. Both of th
terms, as well as the terms for casesn.2, can be expresse
in terms of suitable diagrams. These involve propaga
from the linearized dynamics and vertices from both the n
linear terms in the dynamics and the higher-order corre
tions in the instantaneous PDFAnsatz~see the Appendix!. Of
course, these are not ‘‘bare’’ Feynman diagrams, for
Rayleigh-Ritz approximation is highly nonperturbative a
the propagators and vertices represent ‘‘dressed’’ objects
sulting from statistical closure.

The single-time relation~3.40! that we derived heuristi-
cally is, in fact, a necessary condition for consistency of
Rayleigh-Ritz approximation to the triple correlation. Only
it is true will the three-time correlation in Eq.~3.31! coincide
along the diagonalt25t15t05t with the valueCi jk(m,t)
calculated from the single-time PDFAnsatzP(x;m,t) that is
input into the Rayleigh-Ritz calculation. Indeed, if weas-
sume that Eq. ~3.40! holds, then the second term of E
~3.31! can be rewritten as

C̃i jk
~2!~ t2 ,t1 ,t0!52C̃il ~ t2 ,t1!Cjm~ t1!G lmq~ t1!C̃qk~ t1 ,t0!,

~3.41!

from which it is manifest thatC̃i jk(t,t,t)5Ci jk(m,t). Rela-
tions such as Eq.~3.40! are also very important in othe
contexts within the Rayleigh-Ritz method. For example
relation equivalent to Eq.~3.40!, or

G i jk~m,t !5
]G i j

]mk
~m,t !, ~3.42!

was employed in@5# to prove anH theorem at quadratic
order.

However, the relations~3.40! and~3.42! are not automati-
cally true for an arbitrary PDFAnsatz. They might be taken
as definitions of the triple correlations within the Rayleig
Ritz approximation, which, we should remember, has av
able to it directly from the single-time PDEAnsatzonly the
mean z(m,t)5m and the covarianceCZ(m,t)5C(m,t).
However, the triple correlatorsCi jk(m,t) and G i jk(m,t) are
symmetric in their indicesi, j, k, while the definitions
through Eqs.~3.40! and~3.42! need not have such symmetr
Thus, such a definition may not be consistent. Fortunatel
is possible to construct the closure to ensure that Eqs.~3.40!
and ~3.42! hold, by employing an exponential PDFAnsatz,
such as those previously developed for Boltzmann kin
equations in transport theory@6# ~see also@5#!. Within such a
closure scheme the single-time irreducible correlators are
obtained from a generating function:

G i 1¯ i n
~m,t !5

]nH

]m i 1
¯m i n

~m,t !. ~3.43!

In fact, H(m,t) is just therelative entropy. Because of Eq.
~3.43!, the consistency condition~3.42!, as well as all higher-
order ones, can be automatically ensured by constructing
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closure via an exponential PDFAnsatz. Thus, this closure
methodology has a special relation with the Rayleigh-R
approximation scheme. This will be discussed in detail el
where@7#.

IV. THE FRR IN NUMERICAL COMPUTATION

A. Numerical differentiation

We have studied some of the properties of a PDFAnsatz
required for a physically accurate and mathematically c
sistent approximation of time correlations via the FRR’s. A
other important issue is the feasibility and accuracy of
FRR’s for use in numerical computations. Except in spec
circumstances, it will not be possible to employ the FRR
analytically and numerical solution on the computer will
required. We have seen that the FRR’s give the time co
lations by ~functionally! differentiating the solutions of the
modified closure equation~3.7! with respect to the contro
field h. The numerical problem is to compute the requir
derivatives. It is well known that finite-difference approx
mations of derivatives are inherently numerically unstab
because the decrease in differentiation stepDh needed to
reduce truncation error must cause the round-off error
finite-precision arithmetic to grow. If the FRR’s are to be
useful computational tool, better numerical differentiati
methods must be devised.

Fortunately, this problem has been encountered
solved in the context of other dynamical problems. One
the main application areas issensitivity analysis, in which
the sensitivity of the solution of a dynamical equation
changes in the initial data or to parameters in the equatio
required @8#. By ‘‘sensitivity’’ we mean just the Jacobian
derivative matrix of the solution vector with respect to t
parameter vector~or higher-order derivatives!. Our problem
is exactly of this form, in which the ‘‘sensitivities’’ required
are those of the solution of the modified closure equat
with respect to the added control fieldh. The numerical tech-
niques that yield accurate derivatives in sensitivity analy
depend upon solving additional dynamical equations for
derivatives themselves. There are two general technique
doing so, depending upon the time order of propagating
rivatives: the ‘‘forward mode’’ and the ‘‘reverse mode.
These two techniques have already been illustrated in
context of our earlier discussion. Equation~3.17! for the re-
sponse matrix is equivalent to

dṁ~ t !

dh~ t0!
5A~ t !

dm~ t !

dh~ t0!
~4.1!

integrated forward in time with initial data

dm~ t !

dh~ t0!
U

t5t0

5CZ
T~m,t0!. ~4.2!

Substituting the result into Eq.~3.16! gives the derivative
(dW̃Z /dh(t0))@h#. This illustrates the forward mode. Alter
natively, one may compute the same derivative by integ
ing the adjoint equation~3.20! for a(t) backward in time and
then substituting the result into the formula
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dW̃Z

dh~ t0!
@h#5z~ t !1CZ~ t !a~ t !. ~4.3!

This illustrates the reverse mode. Such equations may
developed for arbitrary derivatives and, implemented
merically, they yield accurate and stable approximations

Not only are these approaches numerically efficient
they can also be largely automated. Software for ‘‘automa
differentiation’’ is now becoming widely available; see@9#.
Such tools directly generate from source code for numer
computation of the solution of the dynamical equation a c
responding code for the computation of its derivative. Th
is no need to compute required input derivatives, such
Ai j 5]Vi /]m j , by hand. Furthermore, it easy to compu
‘‘sensitivities’’ with respect to new perturbations, such
those corresponding to a new class of variablesZ(t) of in-
terest, without requiring extensive recalculations. T
method has been tested and proved successful in applic
to real-life codes for PDE’s employed in fluid dynamics a
elsewhere. The availability of such software greatly enhan
the attractiveness of the FRR’s as a computational metho
calculate time correlations.

B. A simple example

To illustrate the computational use of the FRR, we sh
consider a simple closure for the decay of homogeneo
isotropic turbulence governed by the Navier-Stokes dyna
ics. This closure was originally employed by Kolmogorov
predict the mean energy decay. It was employed within
Rayleigh-Ritz formalism in@10# to predict the two-time cor-
relation of the energy fluctuations. It should be emphasi
that this closure omits a physical effect that is very import
in the decay of energy fluctuations: their relaxation by t
bulent diffusion in space. To see such effects, one must c
struct the closure not just for the kinetic energy at a sin
point ~say, the origin! but with the kinetic energy atall space
points as closure variables. In that case, the closure equa
contain ‘‘eddy viscosity’’ terms, which are an important lin
ear relaxation mechanism for fluctuations. Such impro
ments have been investigated and tested against simul
data in@11#. However, the one-moment closure is adequ
for our purpose, which is to study the utility of the FRR f
numerical computations. The main merit of the closure
that the Rayleigh-Ritz two-time correlation is given analy
cally; see Eq.~4.4! in @10#. This provides an objective bas
of comparison for numerical results. We shall consider h
only the two-time correlations, i.e., the casen51.

The closure we consider has just one moment funct
the kinetic energyK5 1

2 v2 at a single point in space. Th
moment averagem is here denotedE. It obeys the equation

Ė~ t !52LmEp~ t ! ~4.4!

in which Lm , p are suitable real constants. See@10# for
details. The single-time covarianceC(t)ª^@dK(t)#2& is
given in the closure by

C~E;t !5 2
3 E2, ~4.5!
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which follows from assuming a Gaussian one-point veloc
distribution. Thus, the perturbed closure equation becom
here

Ė5V~E!1h~ t !C~E!, ~4.6!

in which V(E) andC(E) are given by Eqs.~4.4! and ~4.5!,
respectively. Now the FRR states that the two-time corre
tion C(t,t0)ª^dK(t)dK(t0)& is given in the Rayleigh-Ritz
approximation by

C̃~ t,t0!5
dE~ t !

dh~ t0!
U

h50

~4.7!

for t.t0 .
The right-hand side of Eq.~4.7! has been calculated by u

numerically, in two different ways. The first method is bas
upon the observation that

dE~ t !

dh~ t0!
U

h50

5
]E

]h
~ t;h!U

h50

, ~4.8!

whereE(t;h) is the solution of the closure equation for th
modified initial datum

E~ t0 ;h!ªE01hC~E0 ;t0!. ~4.9!

The closure equations were numerically integrated with
fourth-order Runge-Kutta scheme with time stepDt
51023, in double-precision arithmetic, but with initial da
tum given by Eq. ~4.9! for the two small valuesh5
61026. The derivative~4.8! of the solution at later timest
was then estimated by the symmetric, second-order fin
difference approximation to the derivative. The seco
method for calculating the functional derivative in Eq.~4.7!
is to solve the analog of Eq.~4.1! with initial datum
@dE(t)/dh(t0)#u t5t0

5C(E0 ,t0), together with the closure
equation itself. These were both integrated numerically
the same Runge-Kutta code as before. The matrixA(t) that
appears in Eq.~4.1! ~here, a 131 matrix! is given analyti-
cally by

A* ~ t !52pLmEp21~ t ! ~4.10!

and it was input directly into the code. Hence, the only err
in the functional derivative calculated by this second meth
as in the solution of the closure dynamics for the means,
the fourth-order truncation errors and the round-off errors

We show in Fig. 1 the correlationC(t,t0) calculated by
the FRR, compared with the analytical Rayleigh-Ritz so
tion given in Eq.~4.4! of @10#. Both the values calculated b
the finite-difference approximation~method 1! and the ad-
joined equation for the Jacobian~method 2! are shown. As
may be seen, these agree perfectly, both with each other
with the exact result. This is not unexpected in our examp
considering the high-order accuracy of our approximatio
and the double-precision arithmetic. In other cases, it is h
to assessa priori the accuracy of the finite-difference ap
proximation, for which the optimal discretization step si
Dhopt may depend upon both space and time in an unkno
manner.

It was shown in@5# that, in general, the same two-tim
correlations provided by the FRR are also given by a lin
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Langevin equation. That model may be only formal, sin
the covariance of its noise term need not be positive. In
case, the numerical use of the Langevin model to calcu
the two-time correlations is far less efficient than the num
cal use of the FRR. Not only must the stochastic equation
integrated for a large enough number of realizationsN@1,
but also in each realization random number generators m
be called in each step of the time integration. Furthermo
the individual realizations governed by the Langevin dyna
ics will be far less smooth in space and time than avera
over the ensemble, and thus much smaller space and
discretization stepsDx andDt will be required. The compu-
tational expense of using the Langevin model is, thus,
higher than for the FRR and is not to be recommended.
stochastic equation is useful only for conceptual purpos
The FRR, on the other hand, is quite efficient becaus
takes full advantage of the increased regularity and stab
of statistically averaged quantities. It is really a ‘‘thermod
namic approach’’ to calculating the time correlations and
a ‘‘statistical-mechanical’’ method.

V. CONCLUSIONS

In this paper we have reviewed and simplified the var
tional approach to statistical dynamics proposed in@4#. As a
main result, we derived a general fluctuation-response r
tion for arbitrary multitime correlations. We demonstrat
that the FRR’s are preserved in a moment-closure appr
mation by the Rayleigh-Ritz method. We discussed
physical significance of the closure FRR’s in terms of va
ous intuitive hypotheses: slaving, regression~linear and non-
linear! of fluctuations. We also discussed computationa
efficient and accurate methods for computing the derivati
required in the FRR’s.

Many interesting problems can be investigated with
present methods. These include temporal multiscaling in
bulence @12,13#, aging phenomena in glassy relaxatio
@14,15#, transition rate theory in chemical kinetics@16#, and
Lagrangian statistics of advected scalar reactants@17#. The

FIG. 1. Comparison of two-time correlations. FRR calculatio
vs exact result. Initial energy att050 was set toE0510 cm2/s2.
The closure parameters in the notation of Ref.@10# are m52, A
50.001 cm5/s2, and Kolmogorov constanta52.
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FRR should also hold for quantum systems, governed
quantum Liouville or master equations. Rayleigh-Ritz me
ods could provide a tractable means to compute multiti
statistics in quantum field theory and in the quantum ma
body problem.
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APPENDIX: DIAGRAMMATIC RULES

We sketch concisely here the diagrammatic rules that
low from the closure FRR for the multitime cumulants
connected correlation functions. The derivation generali
that for the three-time cumulant in Sec. III C. It is advan
geous to specify the latest time to betn and the earliest time
t0 . Then, (n11)-time correlations fort f5tn.tn21.¯

.t t.t05t i are obtained by successive functional differe
tiation of expression~3.33! for R̃@ tn ,t0 ;h# with respect to
h(t1),...,h(tn21), using the ‘‘product rule’’~3.34!. We re-
call from Eq.~3.18! that

A~ t !ª
]V

]m
~m,t !1hT~ t !

]C

]m
~m,t !

and employ the chain rule to calculate successive derivati
We also assume that the single-time irreducible correlati
have the entropy as a generating function, as in Eq.~3.43!.

The terms that result may be associated with graphs.
lines in the graphs terminating at timest, t8 ~internal or ex-
ternal! are given by the covariance functionC̃i j (t,t8). If t

5t8, thenC̃i j (t,t)5Ci j (m,t). The vertices are of two types
For each integerr>2 there are (r 11)-fold vertices of the
form

Wi
j 1¯ j r~s!ªG im~s!

] rVm

]m j 1
¯m j r

~m,s!

and

2G j 1¯ j r 11
~ t !52

] r 11H

]m j 1
¯m j r 11

~m,t !,

where the latter is just minus the single-time, irreducibler
11)st-order correlator. The minus sign appears becaus
the fact thatC5G21 and thus

]C

]m
52C

]G

]m
C.

One may replace theW vertices with Vm
j 1¯ j r(s)

ª(] rVm /]m j 1
¯m j r

)(m,s) if the propagator lineC̃ki(s8,s)
entering thei node of theW vertex is replaced by a linea
propagatorEkm(s8,s) entering them node of theV vertex.

The following rules apply
~i! The graphs that appear are all tree graphs with

times tn ,tn21 ,...,t1 ,t0 terminating the external lines. Th
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trees are rooted at timetn and branch up to earlier times
with the times nonincreasing as one ascends the tree.

~ii ! Each vertex must be linked to at least one of the ea
external timestn21 ,...,t0 directly by a propagator line.

~iii ! The G-type vertices are all evaluated at an early e
ternal time tn21 ,...,t0 , which is determined as the late
time reached by any branch starting upward from that ve
and passing only throughG-type vertices.

~iv! The W-type vertices~or theV-type! are evaluated a
internal timess that are integrated over the largest possi
subrange oftn.s.t0 consistent with the rule of nonincrea
ing times ascending the tree.

Because of rule~ii !, it is clear that there are only finitely
many graphs contributing to each (n11)-time cumulant
function, with vertices of at most (n11)st order appearing
The finite sum of all the contributions from these grap
gives the FRR result for the cumulant function. Thus, it
clear that this graphical representation is not a perturba
-

y

-

x

e

s

n

expansion into Feynman diagrams, since the latter con
closed loops and infinitely many terms. The propagators
vertices here are all ‘‘dressed objects’’ and the representa
is nonperturbative.

When all the external times are equal,tn5...5t05t, then
the graphical representation simplifies considerably. Th
are then noV- or W-type vertices, because the integratio
range over each internal times has shrunk to zero. Further
more, all of theG-type vertices are now evaluated at th
same timet. In fact, the resulting graphical expansion is ju
that of the well-known representation of the single-timen
11)st-order cumulantCi 1 ...i n11

(t) as a sum over tree dia

grams with single-time irreducible correlationsG i 1 ...i r 11
(t)

as vertices and second-order correlatorsCi j (t) on the inter-
nal and external lines. Thus, we obtain a proof for any or
(n11) that, along the diagonaltn5...5t05t in time,
C̃i 1 ...i n11

(t,...,t)5Ci 1 ...i n11
(m,t).
m.
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